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Nonlinear higher-order spectral solution for a
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We calculate the nonlinear response of an infinite ice sheet to a moving load in the time
domain in two dimensions, using a higher-order spectral method. The nonlinearity is
due to the moving boundary, as well as the nonlinear term in Bernoulli’s equation
and the elastic plate equation. We compare the nonlinear solution with the linear
solution and with the nonlinear solution found by Parau & Dias (J. Fluid Mech.,
vol. 460, 2002, pp. 281–305). We find good agreement with both solutions (with the
correction of an error in the Parau & Dias 2002 results) in the appropriate regimes.
We also derive a solitary wavelike expression for the linear solution – close to but
below the critical speed at which the phase speed has a minimum. Our model is
carefully validated and used to investigate nonlinear effects. We focus in detail on
the solution at a critical speed at which the linear response is infinite, and we show
that the nonlinear solution remains bounded. We also establish that the inclusion of
nonlinearities leads to significant new behaviour, which is not observed in the linear
solution.

1. Introduction
The problem of a load moving over the surface of a continuous ice sheet floating

on water of constant depth has been well studied. The book by Squire et al. (1996)
describes in detail the research prior to 1996. One of the most straightforward
problems is to determine the steady-wave pattern in the linear case for a point mass
travelling at constant velocity. In this case the solution can be expressed in terms of
a Fourier transform. The basis of this method was developed by Kheisin (1963), and
Davys, Hosking & Sneyd (1985) considered in detail the response for a steadily moving
load point in three dimensions. Milinazzo, Shinbrot & Evans (1995) also considered
the steady-time problem in three dimensions, and they also considered more general
load shapes and made extensive calculations and comparisons with experiments.
The time-dependent solution was considered by Schulkes & Sneyd (1988) for two
dimensions and Nugroho et al. (1999) for three dimensions. Both solutions were for
a steadily moving load starting from rest.

One of the most striking features of the solution for steady velocities is the existence
of a critical speed, at which the response for the linear problem is infinite. At this speed
the dispersion equation, which was first given by (Greenhill 1887), has a minimum,
so that the group speed becomes zero in the frame of reference of the moving load,
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and energy is unable to propagate away from the moving load. Below and above the
critical speed, the solution undergoes a qualitative change from an isolated depression
to propagating waves in front and behind the point source. In the two-dimensional
problem there also exists a second critical speed at the shallow-water wave speed.
Since this critical speed is an artefact of the assumption of two-dimensionality, it is
often not studied in detail.

Experimental measurements of loads moving on ice have been made, and the two
most important are by Takizawa (1985, 1988) and Squire et al. (1988). They measured
the response of the ice to a range of forcing, including those due to a moving vehicle
and a low-flying aircraft. They found that there was good agreement between the
linear theory and measurements, except at the critical speed. While the experimental
solutions showed a sharp peak close to the critical speed, the solution remained finite.

Various theories have been proposed to understand better the solution close to the
critical speed. Hosking, Sneyd & Waugh (1988) considered a viscoelastic model for
the ice and showed that under these assumptions the response is finite for all speeds.
They also extended their viscoelastic model to the time-dependent case for a steadily
moving load (Wang, Hosking & Milinazzo 2004). Miles & Sneyd (2003) considered
the motion of an accelerating pressure (as opposed to one moving with constant
velocity), and they solved it by using a Fourier transform in space and a Laplace
transform in time. They showed that the solution remains bounded if accelerated
through the critical speed. Recently Parau & Dias (2002) (hereafter P&D because of
the importance of this paper to the present work) considered the nonlinear problem
of a steadily moving load on ice. They transformed the problem to a dynamical
system and were able to find solitary wave solutions, provided that the speed was
close to the critical speed but less than it. We will discuss their paper in more detail
later in the paper. Note that Schulkes & Sneyd (1988) and P&D considered only the
two-dimensional problem.

A number of other nonlinear studies of floating plates, in the absence of a moving
load, can be found in the literature. Forbes (1986) considered periodic finite-amplitude
solutions for the propagation of waves under an elastic plate. Peake (2001) presented
a study of a fluid-loaded elastic plate with a uniform mean flow in the supporting
fluid. The nonlinear terms for the plate in these papers, and in P&D, are all different.
(The nonlinear terms in the fluid are the same.) There is no consensus over the correct
nonlinear terms for a plate, and we consider here the simplest expression given by
P&D. However other nonlinear terms could easily be included in our formulation.

In the present paper we consider the nonlinear problem of the time-dependent
motion of a moving load and show how the solution can be found using a modification
of the higher-order spectral (HOS) method described in Bonnefoy et al. (2008). The
latter has been implemented for both periodic domains (Ducrozet et al. 2007) and
numerical wave tank configuration (Ducrozet et al. 2006). The HOS method was
originally developed by Dommermuth & Yue (1987) and West et al. (1987), to solve
for nonlinear free-surface waves in the periodic configuration. This method uses a
spectral expansion, coupled with the fast Fourier transform (FFT), to calculate the
Dirichlet-to-Neumann map at the nonlinear free surface. The use of FFT provides
a very good numerical efficiency that gives access to high-accuracy simulation on a
large domain and/or during a long period of time. The method is ideally suited to the
problem of moving loads on ice, as the ice deflection stands as a continuous function. It
is however not intended to model discontinuous surfaces, such as ice floes and cracks.

The structure of the paper is as follows: In § 2 we formulate the equations of motion
and present a new non-dimensionalization. In § 3 we rederive the linear solution in
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the time domain for constant velocity due to Schulkes & Sneyd (1988), in a slightly
different form. In § 4 we derive the linear solution close to the critical speed and show
that this has the form of a solitary wave of the kind found by P&D for the nonlinear
problem. We then consider a linearization of the solution of P&D and find that this
is identical to our linear solution, once an error in the P&D solution has been found.
In § 5 we show how the higher-order spectral method can be modified, to allow for
the presence of the floating ice plate. We also present a perturbation solution which
is valid for the static forcing case. In § 6 we present a careful validation of the HOS
solution by comparison to the static solution, the linear solution and the solution of
P&D. We then use the model to make various investigations, focussing on the critical
velocity but also considering other situations and showing various nonlinear effects.
Section 7 is a summary.

2. Equations of motion
We begin by presenting a derivation of the equations of motion. For the linear

case, these have been presented many times before, and a detailed discussion of them
can be found in Squire et al. (1996). The nonlinear terms which we include in our
derivation are the same as those used in P&D. The main difference in our presentation
and those given previously is the choice of non-dimensionalization. We also present
the derivation in two dimensions only, since this is the only situation for which we
will make numerical calculations.

An elastic plate floats on the surface of an inviscid and irrotational fluid, which is
infinite in the x direction and has finite depth in the z direction. The ice sheet covers
the entire water surface which is at z = ξ, where ξ is the deflection of the ice, and the
bottom surface of the fluid is at z = −h. The fluid is governed by Laplace’s equation
with a no-flow condition at z = −h,

�φ = 0, (2.1)

∂zφ = 0, z = −h,

where φ is the velocity potential of the fluid. We include nonlinear effects from the
plate equation and by including the exact deflection of the interface. The kinematic
equation from the continuity of velocity is

ξt = φn, z = ξ. (2.2)

We also have a dynamic equation from the pressure forces, which are given by the
nonlinear Bernoulli equation, the nonlinear bending force of the plate and the external
pressure applied to the plate:

ρφt +
1

2
ρ |∇φ|2 + ρgξ + D∂2

x

(
∂2

x ξ

(1 + |∂xξ |2)3/2

)
= −p(x, t), z = ξ, (2.3)

where ρ is the density of the plate; D is the bending rigidity of the plate; and p is the
applied external pressure. Here we consider the nonlinear curvature of the plate, but
we neglect both the finite thickness and the tension due to bending, following P&D.
Furthermore, we have set the inertia term of the plate to zero, also following P&D.
We note that the nonlinear expression for the plate is different in Forbes (1986) and
Peake (2001).
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2.1. Non-dimensionalization

The equations are non-dimensionalized as follows: We scale the length L = (D/ρg)1/4,
time by T =

√
L/g and the mass by M = ρL3. Under this non-dimensionalization

the equations become

L2

T 2
ρφ̄t̄ +

1

2
ρ

L2

T 2
|∇φ̄|2 + ρgLξ̄ +

D

L3
∂2

x̄

(
∂2

x̄ ξ̄

(1 + |∂x̄ ξ̄ |2)3/2

)
= − M

LT 2
p̄(x̄, t̄), z̄ = ξ̄ ,

L

T
ξ̄t̄ =

L

T
φ̄n, z̄ = ξ̄ ,

and this simplifies to

φ̄t̄ +
1

2
|∇φ̄|2 + ξ̄ + ∂2

x̄

(
∂2

x̄ ξ̄

(1 + |∂x̄ ξ̄ |2)3/2

)
= −p̄(x̄, t̄), z̄ = ξ̄ , (2.4)

ξ̄t̄ = φ̄n, z̄ = ξ̄ .

For the rest of the paper we will drop the overbar for clarity and use the non-
dimensional equations and variables. We believe that this non-dimensionalization is
better than any used previously, because it leaves only the water depth and pressure
as independent parameters.

2.2. Moving load

We consider the problem in which the pressure is given by a moving point load
(sometimes called a line load since our problem is two-dimensional). We will assume
that the load is given by a delta-function forcing. We could extend the theory to
consider more complicated forces but do not do so to keep the presentation as simple
as possible. We also assume that the point pressure is travelling at a constant speed
U. This gives us p(x, t) = δ(x − Ut)f (t), where f is some arbitrary function. We then
change coordinates to x ′ = x − Ut; so (2.4) becomes

φt − U∂x ′φ +
1

2
|∇φ|2 + ξ + ∂2

x ′

(
∂2

x ′ξ

(1 + |∂x ′ξ |2)3/2

)
= −δ(x ′)f (t), z = ξ, (2.5)

ξt − U∂x ′ξ = φn, z = ξ.

Again, for clarity we will omit the prime for the rest of the paper.

3. Linear solution
The linear equations are given by the linearization of (2.5) and are of the following

form:

φt = U∂xφ − ∂4
x ξ − ξ − δ(x)f (t), z = 0, (3.1)

ξt = U∂xξ + φn, z = 0,

where φn = ∂zφ and with

�φ = 0, (3.2)

∂zφ = 0, z = −h,

where h is the non-dimensional depth. We can solve this system of equations using
the Fourier transform in the spatial variable, exactly as was done in Schulkes & Sneyd
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(1988). We define

φ̂ (k, z, t) =

∫ ∞

−∞
φ (x, z, t) eikxdx

and likewise for ξ̂ . Equation (3.2) becomes

φ̂n|z=0 = k tanh khφ̂|z=0.

Substituting this into the Fourier transform of (3.1), we obtain

φ̂t = iUkφ̂ − (k4 + 1)ξ̂ − f (t),

ξ̂t = iUkξ̂ + k tanh khφ̂.

This is a linear system of equations for (φ̂, ξ̂ ), which we can write as

∂t

(
φ̂

ξ̂

)
−

(
iUk −(k4 + 1)

k tanh kh iUk

) (
φ̂

ξ̂

)
=

(−f (t)

0

)
.

This has the solution(
φ̂(t)

ξ̂ (t)

)
=

∫ t

0

eA(t−s)

(−f (s)

0

)
ds + eAt

(
φ̂(0)

ξ̂ (0)

)
,

where A is the matrix

A =

(
iUk −(k4 + 1)

k tanh kh iUk

)
.

3.1. Heaviside forcing

We are especially interested in the case when f (s) = pH (s), where H is the Heaviside
function, and when the plate is initially at rest. This is precisely the case considered
by Schulkes & Sneyd (1988). This gives us(

φ̂(t)

ξ̂ (t)

)
=

∫ t

0

eA(t−s)

(−p

0

)
ds

= A−1(eAt − I )

(−p

0

)
.

Note that an exact expressions for eAt can be easily derived, and this can be found in
Schulkes & Sneyd (1988).

3.2. Steady time limit

Schulkes & Sneyd (1988) show by very careful arguments that, except at two critical
speeds (which will be discussed shortly), as t → ∞ the inverse Fourier transform of
eAt tends to zero. This means that the long-time solution is given by

A−1

(
p

0

)
. (3.3)

The steady problem can also be found by setting all time derivatives equal to zero in
(3.1) and assuming that f (t) = p (i.e. the pressure is a constant). We then obtain

iUkφ̂ −
(
k4 + 1

)
ξ̂ − p = 0,

iUkξ̂ + k tanh khφ̂ = 0,
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which is nothing more than (3.3). Solving for the transform of the displacement we
obtain

ξ̂ = − p

k4 + 1 − U 2k coth kh
, (3.4)

and the steady pattern can be found by inversion. The inversion needs to be performed
with care, because of the singularities in the expression for ξ̂ in (3.4). We calculate the
inversion by the method described in Whitham (1974) for waves on a steady stream
and further applied to floating ice by Milinazzo et al. (1995). We write the time
dependence of the pressure as pe−σ t for σ > 0 and then assume the same dependence
for ξ̂ and φ̂, so that φ̂ = φ̂σ e−σ t and ξ̂ = ξ̂ σ e−σ t . This gives us

−σ φ̂σ = iUkφ̂σ − (k4 + 1)ξ̂ σ − p,

−σ ξ̂ = iUkξ̂σ + k tanh khφ̂σ ,

which has the solution

ξ̂ σ = − p

k4 + 1 − (Uk + iσ )2

k
coth kh

. (3.5)

We then take the limit as σ → 0. The properties of this solution is discussed in detail
in Schulkes & Sneyd (1988). The properties of this solution for three dimensions are
discussed in detail in Davys et al. (1985).

3.3. The critical speed cmin

In two dimensions there exist two critical speeds at which the solution corresponding
to (3.5) is unbounded. One speed is the shallow-water speed U =

√
h and corresponds

to the wavenumber k = 0 in (3.5) and a uniform rise in the time domain. We do
not consider this critical velocity because it does not appear in the three-dimensional
solution or experimental measurements. Furthermore, the HOS method that we
develop conserves volume and cannot be used to analyse this case. The second critical
speed corresponds to a minimum in the phase speed and is discussed below.

The plane progressive waves propagating under an ice sheet satisfy the well-known
dispersion equation

ω2 = (k5 + k) tanh(kh) (3.6)

(Greenhill 1887). The phase velocity is given by

c =
√(

k3 + 1/k
)
tanh kh. (3.7)

A very important property of c is the existence of a critical speed cmin at which there
is a minimum in the phase velocity. We denote the wavenumber at the critical speed
by kmin and note that it satisfies the following equation:(

3k2
min − 1/k2

min

)
tanh kminh +

(
k2

min + 1/kmin

)
h sech2(kminh) = 0. (3.8)

At the critical speed cmin the group velocity and the phase velocity are equal. It
follows physically that if a moving load is travelling with U = cmin, then energy will
not be able to propagate relative to the load and will therefore accumulate. There is
a great deal of discussion about the critical load speed in the papers of Schulkes &
Sneyd (1988) and P&D amongst others. At this critical speed the linear solution for
the point forcing becomes unbounded as t → ∞, in both two and three dimensions.
When measurements of moving loads have been made a sharp peak in the response is
observed close to cmin, but the solution remains finite. Much of the focus of research
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in this area has been on understanding the behaviour near this critical point. We will
return to this situation in the results section.

4. Solution just below the critical speed
We consider here in detail the solution for speeds just below the critical speed.

In this case the solution for both the linear and nonlinear problems consists of a
solitary wave which oscillates and decays. P&D solved the same nonlinear equations
as we have here for the case of speeds just below the critical speed, and that is the
motivation for this section. We also consider an approximation of the linear solution
close to the critical speed, which is not mentioned in previous works. This allows us
to compare the solution of P&D with the linear solution in the small-pressure limit.
The reason for the inclusion of the information in this section in such detail is that it
provides strong evidence that the theory developed in P&D is correct (once the error
in their work is corrected).

4.1. Solution for U near cmin for the linear case

We consider the linear case in which

U = cmin(1 − β), β > 0,

and β is small. We restrict ourselves here to the case of infinite depth, to keep the
expression simple and because this is the only case we will compare with the results
of P&D. The general case of finite depth can easily be developed in the same way as
for infinite depth. The equation for the displacement in infinite depth is

ξ = − p

2π

∫ ∞

−∞

e−ikxdk

k4 + 1 − U 2 |k| = −p

π
Re

[∫ ∞

0

e−ikxdk

k4 + 1 − U 2k

]
. (4.1)

We want to estimate this integral, using the residue theorem. We therefore need to
solve the equation k4 + 1 − U 2k = 0 with U just below cmin and find the solution k in
the lower complex plane which is close to kmin. We therefore write k = kmin + iδ and
substitute this to obtain

(kmin + iδ)4 + 1 − c2
min(1 − β)2(kmin + iδ) = 0.

We then consider this equation in powers of δ and β . The zeroth-order equation is

k4
min + 1 − kmin c2

min = 0,

which is satisfied from the definition of the phase velocity. The equation at the first
order in δ is

iδ
(
4k3

min − c2
min

)
= 0,

which is satisfied from the definition of kmin. This gives us the following equation
which is second-order in δ and first-order in β (and has no product terms in δ and β):

6k2
min(iδ)

2 + 2c2
minβkmin = 0.

From this it follows that

δ = ±

√
c2
minβ

3kmin

= ±kmin

√
4β

3
.
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We now need to determine the residue. We find that

1

4k3 − U 2

∣∣∣∣
k=kmin−iδ

=
1

4 (kmin − iδ)3 − c2
min (1 − β)2

(4.2)

=
1

4k3
min − 12k2

miniδ + 12kmini2δ2 − 4i3δ3 − c2
min + 2c2

minβ − c2
minβ

2

(4.3)

� −1

12k2
miniδ

. (4.4)

What this means is that close to cmin we have

ξ = − p

6k2
minδ

e−δ|x| cos kminx − Re

[
ip

π

∫ ∞

0

e−k|x|dk

k4 + 1 + iU 2k

]
where δ = kmin

√
4β

3
,

(4.5)
where we have deformed the contour of integration in (4.1) from the real to the
negative imaginary axis, and the solution for negative x is found from symmetry (or
by deforming the contour integration into the upper half-plane). Since integral in
(4.2) is bounded, it becomes negligible in comparison to the other term as δ → 0 and
U → cmin. This allows us to write

ξ = − p

6k2
minδ

e−δ|x| cos kminx, (4.6)

which is an approximation to the linear solution for speeds close to (but below)
cmin. This approximation becomes relatively more accurate as the critical speed is
approached.

4.2. P&D solution

P&D presented a nonlinear solution in two dimensions for the steady motion of a
moving load whose velocity is close to but below the critical load speed cmin. Their
method, which is only applicable in two dimensions, was based on transforming
the equations so that the dependent variable was the velocity potential. They then
transformed the equations of motion so that they obtained a nonlinear Schrödinger
equation (NLS), with forcing to describe the wave envelope. They were able to
construct solutions to this equation, some of which corresponded to the linear solution
and its perturbation. We will summarize their results here which are of importance
to us.

The key result of P&D is conveniently summarized on page 284 of their work.
We will compare the solution given by (4.5) with the solution found by P&D in
the limit of small pressure. The key difficulty in making this comparison is the very
different non-dimensionalization used in the two derivations. The solution derived
by P&D is for the displacement (which we denote by ξ̃ because of the different
non-dimensionalization used) is

ξ̃ (x) = − 2

kminL̃

√
2μq1

|q2|

(
1

sinh(
√

μq1/L̃|x| + α)

)
cos(kminx), (4.7)

where q1 and q2 are constants which will be discussed shortly and L̃ the length scale
used by P&D, and

coshα

sinh2 α
=

√
|q2|

2
√

2q1

ε̃

μ
, (4.8)
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where ε̃ is a term proportional to the pressure. We now consider the solution when
ε̃ → 0. Equation (4.8) has approximate solution

2e−α =

√
|q2|

2
√

2q1

ε̃

μ

for small ε̃ (large α). The equation for ξ̃ is therefore

ξ̃ (x) � − 2

kminL̃

√
2μq1

|q2| 2 e−√
μq1/L̃|x|−α cos(kminx)

= − 2

kminL̃

√
2μq1

|q2|

√
|q2|

2
√

2q1

ε̃

μ
e−√

μq1/L̃|x| cos(kminx)

= − 1

kminL̃

ε̃
√

q1μ
e−√

μq1/L̃|x| cos(kminx). (4.9)

The form of (4.9) is almost identical to (4.6). All that remains is to substitute the
values for q1 and change the non-dimensionalization.

For the case of infinite depth q1 = 21/3/3. The length scale is L̃ = U−2/3, and we
assume that we are sufficiently close to the minimum speed that we can approximate
U � cmin. Note here that there is a misprint in the expression (4.14) for μ in P&D
(confirmed by personal correspondence). The correct expression for μ should be
μ = f − f ∗ (where f and f ∗ are defined in P&D) not the incorrect expression give
on page 291 of P&D. We therefore obtain

μ =
1

c
8/3
min(1 − β)8/3

− 1

c
8/3
min

∼ 8

3
βc

−8/3
min

for small β . For infinite depth we have simple expressions for kmin = 3−1/4 and

cmin =
√

k3
min + 1/kmin = 2/33/8. We then obtain

√
q1μ/L̃ = c

2/3
min

√
8

3
c

−8/3
min q1β = kmin

√
4β

3
= δ.

Therefore by comparing (4.9) and (4.6), we can see that the decay lengths agree.
We now consider the pressure term. The pressure non-dimensionalization is U 4/3 in
two dimensions. From P&D ε̃ = pC0/c

4/3
min where C0 = 41/3/6. Substituting these

expressions into (4.6) and multiplying by L̃ to transform to our dimensional form we
obtain

ξ (x) = − 1

kmin

ε̃
√

q1μ
e−√

μq1/L̃|x| cos(kminx) (4.10)

= − 1

kmin

ε̃

L̃δ
e−δ|x| cos(kminx) (4.11)

= − p

6k2
minδ

41/3kmin

c
2/3
min

e−δ|x| cos(kminx) (4.12)

= − p

6k2
minδ

e−δ|x| cos(kminx). (4.13)
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We can therefore conclude that the solitary solution found by P&D with small
pressure forcing corresponds to the solution of the linear equations. We will make
further comparison between the nonlinear solution presented below and the solitary
solution of P&D (see § 6.1.4).

5. Nonlinear solutions
5.1. HOS method

The main result of the present work is an extension of the HOS method to the case of
a nonlinear floating plate. The HOS was developed independently by Dommermuth
& Yue (1987) and West et al. (1987) to simulate nonlinear free-surface waves. The
HOS method uses a spectral expansion and the FFT coupled with a modified Taylor
series expansion to derive a very efficient way of computing the Dirichlet-to-Neumann
map on the free surface (which is not assumed to lie on z = 0 as in the linear theory).
The method is very efficient but not flexible, due to the requirement that all effects be
written as an expansion about the free surface (so that a body which penetrated the
fluid surface could not be considered). The method is ideally suited to the problem of
a moving load on ice, because all motions can be expanded about the free surface. We
will briefly describe the HOS method and present the modifications to the theory which
are required to allow us to consider a floating ice sheet. It is worth mentioning here that
the nonlinearity comes from both the nonlinear equations and the moving boundary.

We begin by defining the free-surface potential φs(x, t) = φ(x, ξ, t) and the vertical
velocity W (x, t) = ∂zφ(x, ξ, t). (Note that these are defined on the moving boundary.)
The nonlinear equations given by (2.5) now become

∂tφ
s = U∂xφ

s − 1

2
|∂xφ

s |2 − ξ +
1

2
(1 + |∂xξ |2) W 2

−∂2
x

(
∂2

x ξ

(1 + |∂xξ |2)3/2

)
− δ(x)f (t), z = ξ, (5.1)

∂tξ = U∂xξ + (1 + |∂xξ |2) W − ∂xξ∂xφ
s, z = ξ. (5.2)

The HOS method requires that we restrict to a finite domain in the horizontal
direction with length Lx and that we apply a periodic condition at the horizontal
boundaries. It is therefore straightforward to express ξ and φs as a discrete Fourier
expansion. We solve (5.1) and (5.2) in the time domain, assuming that we know φs

and ξ at time t . This means that we must calculate W , and this requires a solution of
Laplace’s equation subject to the domain defined by ξ with surface potential given by
φs . The HOS is essentially a very computationally efficient method to calculate this
mapping (the Dirichlet-to-Neumann map).

5.1.1. HOS approximation for W

The HOS method is based on a series expansion of φ and W with respect to ξ :

φ(x, z, t) =

M∑
m=1

φ(m)(x, z, t),

W (x, t) =

M∑
m=1

W (m)(x, t),

where M is the order of nonlinearity and φ(m) and W (m) are quantities O(ξm). We
substitute this series into the definition of the surface velocity potential φs and perform
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a Taylor expansion of the potential φ about z = 0. At the different orders m one
obtains

φ(1)(x, 0, t) = φs(x, t), (5.3)

φ(m)(x, 0, t) = −
m−1∑
k=1

ξk

k!
∂k

z φ
(m−k)(x, 0, t), m = 2, . . . , M. (5.4)

The full Dirichlet problem for φ(x, z, t) on z = ξ (x, t) can then be simplified into M

simpler Dirichlet problems on z = 0, respectively for φ(m)(x, z, t). These problems are
successively solved by means of a spectral method using as a basis functions which
satisfy Laplace’s equation, the no-flow condition at the bottom and the periodicity
conditions. Using this expansion, the potentials φ(m) can be expressed as

φ(m)(x, z, t) =

Nx∑
n=−Nx

Am
n (t)f (knx)

cosh kn(z + h)

cosh knh
,

where f are the basis functions of the discrete Fourier transform of ξ and φs and
kn = 2nπ/Lx is the wavenumber associated with the nth mode. Note that in the infinite
depth case cosh kn(z + h)/cosh knh is replaced by exp |kn|z. The surface potentials φ(m)

are solved numerically in sequence following (5.3) and (5.4). The vertical velocity is
then evaluated in sequence from the Taylor expansion

W (m)(x, t) =

m−1∑
k=0

ξk

k!
∂k+1

z φ(m−k)(x, 0, t), m = 1 to M.

The two formulations of Dommermuth & Yue (1987) and West et al. (1987) are equal
up to this point. However, we now use the formulation of West et al. (1987), which
takes extra care to express the free-surface boundary conditions up to the order M

with respect to ξ . That is to say, if we denote by WM the sum
∑M

m=1 W (m), then we
calculate the values of (1 + |∂xξ |2)W and (1 + |∂xξ |2)W 2, using

(1 + |∂xξ |2)W = WM + |∂xξ |2WM−2 and

(1 + |∂xξ |2)W 2 = (W 2)M + |∂xξ |2(W 2)M−2.

5.1.2. Flexural rigidity

The nonlinear flexural rigidity of the ice sheet is taken into account in the free-
surface equation for ∂tφ

s:

∂2
x

(
∂2

x ξ

(1 + |∂xξ |2)3/2

)
= A∂4

x ξ + 2∂xA .∂x

(
∂2

x ξ
)

+ ∂2
xA ∂2

x ξ. (5.5)

For consistency with the HOS method, the three curvature-related terms A, ∂xA and
∂2

xA are further expressed as Taylor expansions in ξ as follows:

A = 1 − 3

2
|∂xξ |2 +

15

8
|∂xξ |4 − 35

16
|∂xξ |6 . . .

∂xA = B ∂xξ ∂2
x ξ,

B = −3

(
1 − 5

2
|∂xξ |2 +

35

8
|∂xξ |4 + . . .

)
,
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∂2
xA = ∂xB ∂xξ ∂2

x ξ + B ∂x

(
∂xξ ∂2

x ξ
)
,

∂xB = 15

(
1 − 7

2
|∂xξ |2 + . . .

)
∂xξ ∂2

x ξ.

The order of these expansions is chosen so that the flexural term (5.5) is of the order
M in the dynamic boundary condition. For instance the expansions presented above
are valid for M = 7. Note that the linear case presented in § 3 is recovered when we
keep only the terms which are first-order in ξ , that is A = 1, ∂xA = 0 and ∂2

xA = 0.
The operators ∂x and ∂2

x are evaluated in Fourier space.

5.1.3. Numerical absorption

A pressure term is added to the free surface in order to absorb the outgoing waves
that are generated by the moving load. Without this absorption the waves would be
reflected due to the finiteness of the computational domain. The absorbing pressure
is given by pa(x, t) = ρν(x)φn so that the corresponding power

P = −
∫

S

pa φndS = −ρ

∫
Sa

ν(x) φ2
n dS

is always negative, provided that ν(x) is positive in the region Sa in which there
is absorption and zero elsewhere. Note that pa reduces to pa = ρν(x) ∂tξ from
the kinematic boundary condition. The damping function ν is chosen to be ν(x) =
ν0 u2(3 − 2u) with u = 1 − x/xa on the left side of the domain and the symmetric
extension with respect to x = Lx/2 (to match the periodicity condition). The width
of the damping area xa and its strength ν0 need to be tuned to the kind of expected
deflection. We choose to set ν0 = 2 and vary xa . For static deflection (U < cmin),
xa can be quite small, typically 10 times the characteristic length (which is 1 with
our non-dimensionalization). For progressive waves (U � cmin), we need a larger
absorbing area (up to 100 times the characteristic length) so that the transmitted,
and more particularly the reflected, waves are correctly damped. The quality of the
damping zone can be easily monitored by looking at the envelope of the travelling
waves for a linear simulation (M set to unity). If a significant amount of energy is
reflected the envelope will show an oscillatory pattern, whereas it will be flat when
reflection is negligible.

5.1.4. Time stepping

The linear part of (5.1) and (5.2) is analytically integrated following the procedure
described in § 3, so that this part of the integration is exact. The nonlinear evolution
of the system is integrated numerically using a fourth-order Runge–Kutta Cash–Karp
scheme with adaptive time step size (Cash & Karp 1990).

5.1.5. Products and de-aliasing

The nonlinear products involved in the free-surface boundary conditions (5.1) and
(5.2) are computed in the physical space. This leads to the well-known aliasing
phenomenon, which has to be addressed to preserve accuracy (see e.g. Canuto et al.
1988). In general, de-aliased computations can be obtained by using spectra extended
with zero padding. The number of collocation points in the physical space is then
chosen, to remove aliasing errors made on multiple products. The latter products
are found in the free-surface boundary conditions on the one hand and within the
iterative HOS solution for W on the other hand. There are at most M products
(products involving M terms). Applying the half rule, the number of points to use in
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the physical space (Nd
x ) to get a full de-aliasing is

Nd
x =

M + 1

2
Nx.

5.1.6. Numerical details

Forward speed and pressure can be imposed with any given time evolution. For
some situations we require a ramp to smoothly increase from zero either the pressure
or the velocity. In such cases, the ramp function r(t) will be the third-order polynomial

r(t) = (t/Tr )
2(3 − 2t/Tr ), 0 � t � Tr,

where the ramp duration Tr is chosen as appropriate. We also use a different notation,
depending on whether the ramp is in velocity or pressure (T U

r for velocity; T P
r for

pressure).
Spatial derivatives are evaluated in Fourier space. In order to preserve coherency

with the de-aliasing process, the differentiation is applied to wavenumbers kn up to
|n| = (M + 1)Nx/2. Note that no sawtooth instability appears in this simulation (as
it does in the free-surface case), and therefore no smoothing is either required or
applied. In the time domain, the time step is controlled by a proportional feedback
and the absolute error tolerance is fixed at 10−8. We will explicitly give the numerical
parameters M, Nx, Lx, T

U
r , T P

r , ν0, xa for every simulation.

5.2. Static case

A very simple perturbation solution can be developed when U = 0. This will be useful
to validate the HOS model with nonlinear flexural rigidity and check the numerical
convergence (see § 6.1.1). With static ice deflection and null velocity, the kinematic
free-surface condition reduces to zero, and the dynamic condition becomes

ξ + ∂xx

∂xxξ

(1 + (∂xξ )2)3/2
= −p δ(x) H (t).

Note that the water depth has no influence here. We expand the deflection in the
perturbation series

ξ = ε ξ1 + · · · + ε5 ξ5 + O(ε6),

and the pressure is p = ε p1. The linear equation is

(1 + ∂xxxx) ξ1 = −p1 δ(x),

which can be solved for by the Fourier transform (§ 3.2) to obtain

ξ1 = −p1

2
sin(|x|/

√
2 + π/4)e−|x|/

√
2. (5.6)

At the second order, the dynamic condition gives (1 + ∂xxxx) ξ2 = 0; so ξ2 = 0. At the
third order we get

(1 + ∂xxxx) ξ3 =
3

2
∂xx(∂xxξ1 (∂xξ1)

2). (5.7)

At the fourth order, again we get ξ4 = 0, and at the fifth order, the dynamic condition
is written

(1 + ∂xxxx) ξ5 = −3

2
∂xx

[
2 ∂xxξ1 ∂xξ1 ∂xξ3 + (∂xξ1)

2

(
∂xxξ3 − 5

4
∂xxξ1 (∂xξ1)

2

)]
. (5.8)
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Equations (5.7) and (5.8) are successively solved numerically as follows: The spatial
domain of length Lx is discretized into qN points given by xn = nLx/(qN). The Fourier
domain is discretized over N modes given by kn = n(2π/Lx) with n = −N/2 + 1 to
N/2. The q factor is related to the de-aliasing of the products on the right-hand side
of (5.7) and (5.8). For example the double product ∂xx(∂xxξ1 (∂xξ1)

2) has 3N Fourier
modes. If a computation in the space domain over N points is performed, then the
high modes |n| > N/2 fold onto the |n| � N/2 first ones; this is the well-known
aliasing phenomenon. A value q = 2 ensures that the previous product is alias-free as
the high modes (now |n| > N) fold onto the modes |n| = N/2 + 1 to N , thus leaving
intact the |n| � N/2 ones. Practically, the product is evaluated in the space domain
on qN points, and the Fourier modes with |n| above N/2 are neglected (set to zero).
A value q = 4 is used in what follows to ensure alias-free products up to the fifth
order. In the the expressions given later εn ξn are replaced by ξn for clarity. The values
of N, q, Lx, p will be specified later on.

6. Results
There are many possible results which we can present. However, we focus on

quantifying the transition from linear to nonlinear behaviour and on the solution
near cmin. However, we begin with a careful validation of the HOS method.

6.1. Validation

Before going any further, it is necessary to validate the nonlinear HOS model we
have developed. While the HOS nonlinear approach has been thoroughly validated
for water waves (see e.g. Dommermuth & Yue 1987 and West et al. 1987) the present
application is new and needs to be checked.

6.1.1. Static case

Equation (3.4) gives the linear solution that we compare either with the HOS
result for small pressure or with the linear HOS method which is obtained by setting
M = 1. The pressure is imposed at t = 0 with a value p = 10−4 without any ramp,
and the transient waves are absorbed by the numerical damping region. According
to Schulkes & Sneyd (1988) the steady state is approached relatively rapidly for low
load speed, and we take the deflection at t = 600 as an estimation of the steady state.
Numerical parameters are set as follows: For the HOS model, domain length is set to
Lx = 40, and we vary Nx to check grid convergence. In order to absorb the transients,
the HOS model is run with an absorbing zone whose length xa is set to 10% of the
domain length and a magnitude ν0 = 2. The perturbation solution is estimated with
the same Lx and pressure and with a varying N = Nx and a fixed q = 4 (see (§ 5.2)).

We estimate the relative error ε1 as the mean quadratic error ||ξ1−ξ ||2 between linear
theory ξ1 in (5.6) and the linear HOS deflection ξ (M = 1) divided by the maximum
deflection of ξ1. This relative error is given (in %) in table 1. For comparison, we
also give the magnitude M3 of the third-order deflection which we evaluate as the
mean quadratic third-order elevation ||ξ3||2 obtained from the perturbation theory
(5.7) divided by the maximum deflection of ε1 (given in % in Table 1). Table 1 shows
that error in the linear deflection decreases when the number of modes is increased,
as expected, until grid convergence is reached. The linear result given by the HOS
model with M = 1 therefore satisfactorily agrees with the linear theory presented in
(§ 3.2) when U = 0. Furthermore the deflection error obtained with the HOS model
is four orders of magnitude below the third-order deflection; this very low level of
error is encouraging for the accuracy of further nonlinear simulations.
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Nx 106 × ε1 102 × M3

16 8.4 0.27
32 6.3 2.0
64 2.2 1.8
128 1.3 1.3
160 1.2 1.2

Table 1. Error at first order (obtained with M = 1).
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Figure 1. Third-order deflections.

Note that the constant component has been removed from both ξ1 and the deflection
from the HOS model before evaluating the error, as the HOS model ensures a constant
volume of the numerical domain. This constant component could however still be
recovered from the HOS model as −ξ (x = ±Lx/2), provided that Lx is long enough
to ensure that oscillations are negligible at the boundaries.

We now investigate the nonlinear HOS and perturbation solution for the steady
case. The input pressure is set to p = 1.5, and the domain length is set to Lx = 40.
Nonlinear simulation are carried out with by varying Nx and M . Again, the pressure
is imposed at t = 0 to be p, and there is no ramp. The deflection at t = 600 is chosen,
for comparison with the perturbation solution once the transient waves have been
absorbed. The perturbation solution is estimated with N = Nx and q = 4. We have
seen previously that a good agreement is obtained with the linear theory. We use this
to estimate the nonlinear deflections at the third and fifth orders for the HOS model
as ξ − ξ1 and ξ − ξ1 − ξ3 respectively, where ξ is the nonlinear HOS results obtained
with Nx = 160 and M = 7.

Figures 1 and 2 show a comparison between the third- and fifth-order deflections
for both the perturbation model and the HOS model. We also plot on these figures
the difference between the perturbation and HOS deflections. Clearly the perturbation
results are correctly reproduced by the HOS model. In figure 1 the difference between
the two models is the fifth-order deflection as can be clearly seen in figure 2. Similarly
in figure 2, the difference between the fifth-order solutions should be the seventh-order
deflection, but we did not develop the perturbation model of this order and cannot
confirm this.
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Figure 2. Fifth-order deflections.

Nx M 102 × ε3 102 × M5

64 3 19 3.7
128 3 12 2.6
160 3 10 2.3
64 5 7.6 3.7
128 5 2.3 2.6
160 5 2.0 2.3
128 7 2.6 2.6
160 7 2.3 2.3

Table 2. Error at third order.

Table 2 shows the error ε3 (in %) between the HOS and perturbation solution
at third order, evaluated as the mean quadratic error ||ξ1 + ξ3 − ξ ||2 divided by the
maximum deflection of ξ3. We also give the magnitude M5 of the fifth-order elevation
(in %) in the last column, which is estimated as the mean quadratic fifth-order
elevation ||ξ5||2 divided by the maximum deflection of ξ3. This relative error ε3 tends
towards M5 since the difference between the nonlinear deflection ξ and the third-order
deflection ξ1 + ξ3 represents higher-order effects which are dominated by the fifth-
order solution. However the results for M = 3 show that the error ε3 is greater than
||ξ5||2. This means that M = 3 is not strictly equivalent to the third-order perturbation
solution. For M � 3 and Nx � 128, ε3 is approximately equal to ||ξ5||2, which means
that grid convergence has been reached and that third-order effects are correctly
reproduced. The validation made at the third order is enough for our purpose, and
the HOS model is correct to this order for the nonlinear ice flexural rigidity.

6.1.2. Linear subcritical case

In the linear regime (3.4) provides the analytic deflection. This will be used to
validate the linear part of the HOS model. We have also shown that this expression is
equivalent to the solution presented by P&D in the small-pressure case, for subcritical
velocities (U < cmin) close to cmin. It is known that for non-static loads one may expect
longer lasting transients (Schulkes & Sneyd 1988), and we therefore use a ramp for
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Figure 3. Linear deflection and errors at subcritical speed U = 1.

the pressure. The ramp T P
r = 300, and the simulation is run until t = 600. This

ensures that the transients have been absorbed by the lateral damping zone, so that ξ

is steady after the ramp. We consider the infinite water depth case. Figure 3 shows the
linear deflection for U = 1, after normalization by p/2

√
2 (the maximum deflection

for U = 0). The HOS model is run with both M = 1 and M = 5 for a small value
of the pressure (p = 10−4) and compared to the linear deflection given by (3.4).
Once again, the constant mode has been removed from both the HOS and the linear
solutions before comparison. Figure 3 shows the linear deflection (solid line) and the
relative errors obtained with the two HOS simulations described above. We can see a
good agreement between the HOS simulations and the linear theory. The HOS model
will be further validated for subcritical velocities in the nonlinear regime (see § 6.1.4).

6.1.3. Linear supercritical case

Anticipating the nonlinear study that follows, the supercritical speed U = 1.38 has
been chosen so that the second-order wavenumbers do not correspond to either the
linear left or the linear right wave field wavenumbers. The HOS deflection shown in
figure 4 goes to zero at the boundaries of the domain due to the absorption zone. The
fact that the envelope of the wave is constant outside of the damping zone |x| < 100
is a good sign of the absorption quality. Figure 4 shows that the linear solution is
correctly reproduced by the HOS model both with the linear version (M = 1) and
with the nonlinear version with a small pressure (M = 5). This validates the model
for supercritical velocity in the linear regime.

6.1.4. Solution for U near cmin for the nonlinear case

The nonlinear results are now compared with the solitary wave solution of P&D,
which is valid for speeds just below cmin (Note that cmin ≈ 1.3246). The coefficient
ε used to create figure 10(b) in P&D was set to 0.0497 instead of 0.003, due to
an incorrect non-dimensional form for the pressure forcing in their paper (personal
communication with the authors). In two dimensions, the Dirac delta distribution is
homogeneous to an inverse length and requires a non-dimensional form L−1. This
leads to a pressure scale of ρL3T −2.
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Figure 4. Linear deflection at supercritical speed U = 1.38.
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Figure 5. Comparison with the P&D results (ε = 0.003).

The HOS model is run with both M = 1 (linear) and M = 5 (nonlinear) for
ε = 0.003. We let the velocity U vary from 1.31 to 1.3246 by means of an appropriate
ramp. It is important to slowly vary the velocity near cmin, since the deflection changes
rapidly, and we choose T U

r = 105. Since ε = 0.003 the pressure has to be adjusted at
each velocity (because p = ε/C0U

4/3). Linear and nonlinear maximum deflection at
x = 0 obtained by both the solitary wave of P&D and the HOS model are plotted in
figure 5. We can see agreement between the linear deflections which tend to infinity as
the velocity tends towards cmin. As was shown in § 4, the linearized solitary solution
tends to the linear solution given in Schulkes & Sneyd (1988) as the integral part in
(4.5) becomes negligible when U tends towards cmin. (The linear HOS result includes
this integral part.)

For values of β greater than 0.005 we can see that the nonlinear effects are negligible,
and the pressure imposed with ε = 0.003 then falls into the linear regime. When we get
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Figure 6. Nonlinear deflection at subcritical speed U = 1.

closer to the critical velocity (lower β) the nonlinear deflection departs from the linear
theory and we observe a finite deflection for U = cmin. One may observe discrepancies
between the HOS and NLS predictions: it appears that the NLS result under-predicts
the maximum deflection. Similar results have been reported for capillary–gravity
waves by Dias, Menasce & Vanden Broeck (1996) and Laget & Dias (1997). As
the HOS computation with M = 3 provides the same results, the third order of the
NLS solution does not seem to be the source of this discrepancy. The narrow band
assumption of the solitary solution might be a possible explanation.

6.2. Nonlinear effects

We now use the HOS method to investigate the finite-amplitude effects for significant
pressures. We begin with the subcritical and supercritical regimes. To discuss the
nonlinear effects, we extract the nonlinear components of the deflection by computing
the difference between the linear case obtained with M = 1 and the nonlinear case
with M = 5. This value of M ensures that third-order effects are correctly reproduced.

6.2.1. Subcritical speed

In the first study we investigate the effect of finite pressure at subcritical speed.
Longer ramps are required in this case in order to ensure the correct transient
attenuation and that we have reached the steady state. The pressure time ramp is
T P

r = 3500, and the simulation is run until t = 4000.
As in the supercritical case (see § 6.2.2), the pressure ramp is set with T P

r = 1000,
and simulation lasts until t = 2000. Unless specified the nonlinear effects are studied
for infinite water depth.

For moderate subcritical speeds, the nonlinear behaviour of the deflection is similar
to that for the static case. Figures 6 and 7 show respectively the deflection in the
space and in the Fourier domains for U = 1 and a pressure p = 1. The nonlinear
effects are important near the moving load, where the maximum deflection occurs.
For the pressure considered here the amplitude of the nonlinear effects reaches 12%
of the total at x = 0. In figure 7 the Fourier amplitude of the difference between linear
and nonlinear defection shows a change of sign at k = 2.5. A similar effect can be
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Figure 7. Fourier domain nonlinear deflection at subcritical speed U = 1.
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observed for static loads (§ 6.1.1). We have also checked that the high wavenumbers
are correctly reproduced, by increasing the number of modes.

The full width of half maximum (FWHM) of the deflection is plotted against
pressure in figure 8. One may observe that the nonlinear FWHM departs from the
linear for non-zero pressures, and it can be seen that nonlinear effects tend to sharpen
the deflection. Note that the reason why the FWHM estimation from the HOS is
incorrect at very low pressures is the transients which have not been completely
absorbed.

We now investigate the behaviour of the nonlinear solution when the velocity is
less than the critical velocity. The velocity is slowly increased from 0.8 to 1.25, so that
the solution is quasi-static, for different pressures. The maximum deflection occurring
at x = 0 is plotted in figure 9. To validate the quasi-static assumption, we found the
solution with a longer velocity ramp and checked that this solution was identical to
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Figure 9. Maximum deflection against velocity for different pressures.

the one plotted in figure 9. The lowest pressure case (linear) clearly shows a one-half
inverse power law β−1/2 for the maximum deflection. When the pressure increases
however, the maximum deflection departs from this law, and the closer the velocity
becomes to the critical speed, the more pronounced the departure. With nonlinear
effects taken into account one may observe normalized deflections more than twice
as high as the linear prediction.

6.2.2. Supercritical speed

At supercritical velocities, one expects to see two progressive wave trains, one on
each side of the pressure source. In order to investigate the nonlinear effects on these
wave trains a useful separation of odd and even orders is made. Following Baldock,
Swan & Taylor (1996) we run two simulations with positive and negative pressures
and denote ξ+ and ξ− the corresponding deflections. By writing

ξodd =
1

2
(ξ+ − ξ−) and ξeven =

1

2
(ξ+ + ξ−)

one may see that, as in a classical perturbation approach, odd and even orders
of nonlinearities are effectively separated. The even nonlinear deflection ξeven is
dominated by second-order effects.

Figure 10 shows the steady odd and even components of the nonlinear deflections
for p = 0.08. For comparison the linear deflection with positive pressure is added. The
HOS results are obtained with Nx = 512 modes in Lx = 200 long domain at t = 2000
after a ramp applied on pressure with T P

r = 1000: the steady state is reached. Due to
the progressive character of the generated waves, the absorbing zone must be efficient
enough so that both the transmitted and reflected waves are correctly absorbed.
Effective parameters are found to be xa = 0.3Lx and ν0 = 0.2. This corresponds to a
smooth and long absorbing zone, compared to the associated wavelengths.

Behind the moving load in figure 10 we can see that the nonlinear wavelength is
slightly larger than the corresponding linear one. In the fixed frame of reference, one
would see a corresponding decrease in the frequency f = U/λ. The even nonlinear
effects tend to lower both the crests and troughs of the trailing wave, in contrast to
the usual Stokes waves. This effect was also reported for a moving disturbance on
water without ice (Doctors & Dagan 1980, e.g.). The deflection is modified by the
relative phases of both components, which mainly depend on the velocity. The even
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Figure 10. Nonlinear deflection at supercritical speed U = 1.38.

deflection reaches here 10% of the total deflection. Ahead of the moving load one
may observe that the even deflection mainly oscillates with the same wavelength as
the linear deflection, and the finite amplitude effects tend to increase the wavelength.

Simulations at U = 1.45 (which we do not plot) show stronger nonlinear effects for
the same pressure p = 0.08. Also, for this velocity, the even nonlinear effects tend to
sharpen the crests and flatten the troughs in the trailing wave, as for typical water
waves, while the observed wavelength still increases. The leading wave has an even
deflection that oscillates with linear wavenumber as seen for U = 1.38.

6.3. Critical speed

In the linear case, the solution at the critical speed exhibits a divergent behaviour.
However, completely different wave patterns are obtained when the nonlinear terms
are retained. The pressure is set to p = 0.025 and the velocity to U = cmin. Calculations
are run until t = 3 × 104 over 4096 modes with the HOS nonlinearity parameter set
to M = 5. The domain is Lx = 4000 long, and the absorption parameters set to
xa = 0.2Lx and ν0 = 0.005 to ensure a correct damping. The displacement oscillates
rapidly, and we plot the displacement envelope.

The deflection Hilbert transform is computed to obtain the envelope which is
plotted in figures 11 and 12 at different instants. The deflection is normalized following
Schulkes & Sneyd (1988) with respect to vertical length scale

Lv =
2p tanh kminh

kmin cmin ∂2c/∂k2(kmin)
√

tmin

,

where the growth timescale tmin is given by

tmin =
2π

k2
min∂cg/∂k(kmin)

.

At t = 30 000 the envelope has reached a steady state for |x| � 1000, and the
corresponding displacement envelope is shown in figure 11. The far-field envelope
is almost constant. The maximum amplitude is reached at x = 0 and is 27. The
normalization parameter is Lv � 1/107 which gives |ξ (0)| = 0.25. The corresponding
local steepness may be estimated as kmin|ξ (0)| = 0.1.
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Figure 11. Nonlinear steady deflection at critical speed U = cmin and t = 30 000.
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Figure 12. Evolution of the nonlinear deflection at critical speed U = cmin.

Figure 12 shows the long-time evolution of the envelope. (The short-time behaviour
is investigate in figure 13.) One can observe the emission of two wave packets
propagating away from the pressure distribution. The deflection shows different
leading and trailing waves, and the two wave packets are not symmetric.

Figure 13 shows the evolution of the maximum deflection at x = 0 for both the
linear and nonlinear case in a logarithmic scale. The linear maximum is evolving
like t1/2 as expected from the theory (Schulkes & Sneyd 1988). The early evolution
of the nonlinear case shows that the maximum deflection at first follows the same
evolution until t = 500, when the behaviour starts to differ from the linear one, and
the maximum reaches a steady state near t = 2000. Due to wave propagation, the
steady state for x �= 0 will be reached at later times as is shown in figure 12.

6.4. Experimental values

Squire et al. (1988) conducted experiments on Antarctic Sea ice, using strain wave
gauges, and they used vehicles and aircraft as the moving load. Obviously those
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Figure 13. Evolution of the deflection at critical speed U = cmin.
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Figure 14. Maximum deflection approaching the critical speed.

experiments were three-dimensional, and any comparison with two-dimensional
theory will only be an approximation. We consider the experiments conducted with the
moving vehicle and set the pressure to be p = M/(ρL2b), where M is the mass of the
vehicle, b its width. This corresponds to an infinite line of vehicles with zero spacing,
and we expect this will be an over-prediction of the importance of nonlinear effects.
The mass is assumed to be M = 2100 kg, and the width is assumed to be roughly
b = 2 m. The water depth is supposed to be infinite. The non-dimensional pressure
is p = 0.0025, Lx = 2000 and T U

r = 1.2 × 105. The experimental pressure is very
small for the rigidity of the ice sheet, so that nonlinear effects will be of importance
only near the critical speed. We therefore consider velocity in the range 1.315 to
1.32465. Other numerical parameters are M = 3, Nx = 1024, xa = 500, ν0 = 0.6.
Figure 14 shows the maximum deflection |ξ (0)| versus the factor β already used in
previous sections. Note that β is much smaller than in figure 5, as the nonlinearities
are much smaller. (The pressure for the experiments is eight times smaller than the
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Figure 15. Evolution of the wave height near jump.

pressure used in § 6.1.4, as p = ε/C0U
4/3 means p = 0.02 for U = cmin.) Furthermore

the nonlinear amplitude is also smaller at the critical velocity when β = 0 than in
figure 5. Physically this amplitude corresponds to approximately 1.4 m, which is far
greater than was ever observed. However, it is important to note that this is the
two-dimensional solution with a line load taken from the car width. It is probably
much more reasonable to take a larger width to approximate a single car, and in
this it could easily reduce the displacement by an order of magnitude. Furthermore,
the long time limit was never reached in the experiment. Our computations show
that after 1 minute the amplitude is 0.11 m, and after 1 hour it is 0.95 m. A fuller
comparison requires a three-dimensional nonlinear solution.

6.5. Further nonlinear effects

For the problem of moving loads on ice, the linear theory does a satisfactory job of
explaining the experimental observations except close to the critical velocity. We have
therefore focused our attention on solutions near the critical velocity. Other nonlinear
effects can be observed, and we present one such example here.

Figure 15 shows the deflection height estimated from the nonlinear leading and
trailing wave as the velocity is slowly increased from 1.42 to 1.447. The other numerical
parameters for this simulation are Lx = 2000, M = 3, Nx = 2048, xa = 500, ν0 = 0.05
and p = 0.0025. Note that the load was conveniently set at xl = 180 in this simulation
so that the trailing domain in which interesting features occur is longer. The leading
and trailing wave trains undergo strong and asymmetric modification at the velocity
around Uj = 1.442. The nonlinear solution seems to jump from one branch of
solution to another. Figures 16 and 17 show the simulated deflection respectively at
U = 1.42 and U = 1.447, that is before and after the jump velocity Uj . Both cases
present a leading wave whose envelope is uniform and symmetric with respect to
z = 0; however the trailing wave is asymmetric. Before the jump, the trailing envelope
is uniform, and the depth of the troughs is more than the height of the crests, similar
to what was observed in § 6.2.2. After the jump, figure 17 shows that the envelope is
no longer uniform, and it attenuates away form the load. Observations in the Fourier
domain reveal that the jump happens when the leading wavenumber kf is half the
trailing wavenumber kt , which shows that this phenomenon is associated with a triad
interaction in which kt = kf − kt in the vicinity of the moving load.
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Figure 16. Wave field at U = 1.42 < Uj .
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Figure 17. Wave field at U = 1.447 > Uj .

Similar effects were previously observed for water waves. Dias et al. (1996) investig-
ated the case of capillary–gravity waves with finite amplitude. Two families of small-
amplitude solitary waves are known to exist, bifurcating either from a uniform flow
or from infinitesimal periodic waves at the minimum velocity. They were able to show
that these two families were connected. They also found new families of solitary waves
with finite amplitudes, similar to the one observed here. Laget & Dias (1997) showed
analogous results for capillary–gravity interfacial waves and found new families for
large density ratios and finite amplitude. Here at fixed flexural rigidity and pressure,
infinite depth and when the velocity is slowly varied, we found that the wave solution
undergoes strong modifications, probably jumping from one family to another.

7. Summary
The aim of the present work was to investigate the effect of including nonlinear

terms in the solution for a moving load on ice. We know that the linear theory gives
good results when the load is small as has been shown by the experimental results,
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except close to the critical velocity. We have shown that for the typical loadings the
nonlinear effects give a small correction to the linear solution. We have also validated
the solution in P&D (with a small correction) both by our HOS method and by a
derivation from the linear solution. We have shown that the nonlinearities ensure
that the solution remains bounded as the velocity approaches the critical velocity,
although our two-dimensional model appears to over-predict the response (although
we could scale the solution differently). Finally, we have shown that the nonlinear
solution exhibits other nonlinear behaviour such as a triad interaction, which leads
to a new type of solution not observed in the linear case.
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